Sphinx Example Project Documentation
Release 1

John Doe

Aug 10, 2018

Contents

Introduction

1.1 History
1.2 Architecture
1.3 Roadmap
14

1.5 Built on Corda

Concepts

21 DGL e
22 DAO e
23 Metering
24 Foundation
Cordite Test

3.1 DGL CLI Demonstration
3.2 DAO CLI Demonstration
3.3 Metering CLI Demonstration

3.4 BraidJS Client Example
3.5 TokenJSExample
3.6 DAOJSExample.
3.7 Connectiondetails
3.8 Cordite Entities
Contributing

41 CodeofConduct
4.2 Issue Management
43 Legal
44 Licence
4.5 Gettingintouch
4.6 Troubleshooting
4.7 Contributing L.
4.8 Repository Accesso
49 Releases

Frequently Asked Questions
5.1 Can I run multiple nodes on a single machine?

Cordite provides de-centralised governance and economic services to mutually distrusting corpora-
tions wishing to solve distributed challenges in their industries.

NN =

W N

25
25
26
27
27
27
28
28
28
28

29
29

CHAPTER 1

Introduction

1.1 History

Cordite is as much a philosophy as it is an application, and to understand it’s significance, you must also understand
its journey.

The Distributed Ledger Technology space is fueled by disruption and innovation with which unavoidably attracts
challenges and at times reservations. 2016 was all about performance and scalability, 2017 was all about security.
These are technical challenges. The harder challenges are the social and political ones.

One of the key unsolved challenges is how to support a decentralised business model. We believe that there is no point
replacing one centralised business model with another. 2018 will be the year that many in the blockchain domain
wake up to the fact that there is little point in adopting DLT and distributing their technology if they are not going to
distribute the business model as well.

See the case for decentralisation: https://medium.com/@rickcrook/the-case-for-de-centralisation-lac14935a3fc

And it is this same philosophy, that lies at the core of Cordite. Cordite builds on the work of Richard Gendal Brown,
James Carlyle, Ian Grigg and Mike Hearn in their Corda whitepaper in August 2016. The Corda whitepaper introduces
us to a Corda Distributed Application (“CorDapp”). We expect a great number of CorDapps will be built to provide
improved or new services and to make operational efficiencies. One of the core features of a CorDapp is that it is
distributed with no centralised aspect of the technology layer. We believe that distribution should not be limited to
the technology layer. Distribution needs to also permeate through the business process the application supports. We
would propose that any centralisation in either the technology or business layers would make the use of a distribute
ledger technology redundant. A traditional server-client based application would suffice if there is centralisation in
either the technology or business layers.

See the Corda Whitepaper at: https://docs.corda.net/_static/corda-technical-whitepaper.pdf

The technology itself is travelling broadly in the right direction, with open-source protocols remaining dominant over
proprietary schemes. The initial vendors in this space have largely pivoted their business models after clients were
reluctant to engage in full stack solutions. The large technology vendors have attempted to gain ground in the space,
and to date no single vendor has managed to dominate and create vendor lock in.

The activity is moving away from its exploration and research phase, and towards targeted delivery and commercial-
isation of distributed applications. This is largely being driven by consortiums, such as R3, who are working with

https://medium.com/@rickcrook/the-case-for-de-centralisation-1ac14935a3fc
https://docs.corda.net/_static/corda-technical-whitepaper.pdf

Sphinx Example Project Documentation, Release 1

financial institutions and other leaders to launch propositions into the market.

Many organisations have learnt that there is only so much fun you can have on your own with a distributed ledger and
collaborated to build CorDapps. Some have chosen to create joint ventures or centralised legal entities to fund and
operate these CorDapps. The centralised business layer renders the use of a distributed ledger technology redundant.
These CorDapps need a distributed funding and incentive for the build and operation of these respectively. For these
CorDapps to be truly distributed their governance and economic model needs to be de-centralised too.

As a result, we have Cordite, an open source CorDapp that provides companies and corporations the distributed
governance and economic services that CorDapps will need to be truly distributed.

1.2 Architecture

Docker Container
Javascript

Java/Kotlin

Metering

Your
CorDapps DAO

Swift

Ledger

NET

(. rd a Python

1.3 Roadmap

One of the key unsolved challenges is how to support a decentralised business model. When building decentralised
applications, we believe that there is no point replacing one centralised business model with another. 2018 will be the
year that many in the blockchain domain wake up to the fact that there is little point in adopting DLT and distributing
their technology if they are not going to distribute the business model as well.

1.4 Cordite provides de-centralised governance and economic ser-
vices to mutually distrusting corporations wishing to solve dis-
tributed challenges in their industries.

Cordite provides decentralised economic and governance services including:

2 Chapter 1. Introduction

Sphinx Example Project Documentation, Release 1

May 2018 September
2018

e Alpha (MVP) * Beta (stable)
e Test nodes and BYO * New Features
¢ Optimization
¢ Decentralization

* Bug Fixes

Fig. 1: Cordite Roadmap

¢ decentralised stores and transfers of value allowing new financial instruments to be created inside the existing
regulatory framework. eg. tokens, crypto-coins, digital cash, virtual currency, distributed fees, micro-billing

¢ decentralised forms of governance allowing new digital autonomous organisations to be created using existing
legal entities eg. digital mutual societies or digital joint stock companies

¢ decentralised consensus in order to remove the need for a central operator, owner or authority. Allowing Cordite
to be more resilient, cheaper, agile and private than incumbent market infrastructure

1.5 Built on Corda

Distributed Ledger Technology (DLT) (‘blockchain’) is a disruptive technology that could enable institutions to reduce
costs, improve product offerings and increase speed. There has been an explosion of activity - with institutions actively
researching, testing and investing in this technology. Financial institutions have remained at the forefront of this
development, and have established a strong insight into the underlying technology, the market landscape and the
potential value applications for their businesses.

Cordite is built on Corda, a finance grade distributed ledger technology, meeting the highest standards of the banking
industry, yet it is applicable to any commercial scenario. The outcome of over two years of intense research and
development by over 80 of the world’s largest financial institutions.

Cordite is open source, regulatory friendly, enterprise ready and finance grade.

1.5. Built on Corda 3

http://corda.net

Sphinx Example Project Documentation, Release 1

4 Chapter 1. Introduction

CHAPTER 2

Concepts

2.1 DGL

The Distributed General Ledger provides a de-centralised way to manage accounts and issue tokens by: - Providing
de-centralised stores and transfers of value allowing new financial instruments to be created inside the existing regu-
latory framework. eg. tokens, crypto-coins, digital cash, virtual currency, distributed fees, securitisation - Allowing
participants to record, manage and execute financial agreements in perfect synchrony with their peers, creating a world
of frictionless commerce. - Providing a financial toolkit that can include promissory notes, settlement issuances and
account aliases.

2.1.1 Why are we interested in a DGL?

When a company provides goods or services to another, they tend to expect payment in return. For hundreds of years,
companies have recorded such sales or purchases on their respective ledgers. These general ledgers represent what
they own (their assets) and what they owe (their liabilities) and both companies will endeavor to ensure both ledgers
match.

In order to do this, they rely on sharing purchase orders, invoices, payment instructions and receipts. These formal
documents are followed up with a range of communication including meetings, emails, facsimile and phone calls. All
of these resources and efforts are exhausted, simply to try and keep the two over lapping accounts (sales and purchase
in this example) matched on their respective ledgers.

A company will likely have many of these overlapping accounts between themselves, their clients and suppliers. As
you can imagine, keeping these all aligned becomes a tremendous drag on all parties involved.

2.1.2 Where do banks fits in?

Banks will also have a general ledger representing their assets and liabilities. One of the liabilities on this ledger will
be the deposits their corporate customers have made into the bank. The bank calls these deposit ‘accounts’ on their
ledger, but the corporate customer will see these as ‘cash (or bank) accounts’ on their ledger.

Sphinx Example Project Documentation, Release 1

Just another case of overlapping accounts between two general ledgers which need to be aligned. Another case of
expended effort and drag.

2.1.3 More madness

In order to make payments between corporate customers at different banks, banks also need to have relationships with
each other. Be it between a corresponding bank, a central bank, a reserve bank or a clearing bank.

Each bank will hold deposits with these other banks to cement the relationship. Bank A will hold a nostro account to
record the banks money held in a deposit at another bank B. Bank B will hold a vostro account to record the deposits
they have received from bank A. All of these banks might have many of these types of vostro or nostro accounts
on their respective ledgers and guess what, each bank needs to keep all these overlapping accounts aligned. More
madness, more drag.

2.1.4 Distributed General Ledger

One way of keeping all the overlapping accounts aligned would be to share all the transactions on a single public
ledger and have all the corporates validate each other’s transactions. The obvious disadvantage of this solution is that
everyone can see each other’s transactions.

A second way would be to allow each corporate over time to connect their general ledger with the general ledger of
their clients, suppliers and banks. Thus, creating a private peer to peer network of inter-connected ledgers. Enter the
Distributed General Ledger.

The Distributed General Ledger would allow corporates to record, manage and execute financial agreements in perfect
synchrony with their client, suppliers and banks, creating a world of frictionless commerce.

DGL : Token issuance and transfer

Georgina’s great-great-great-grandfather (grandfather) was shipwrecked on Kirrin Island. On the Ship was a 100
gold coins (XAU). Georgina lives with her Uncle Quentin at Kirrin Cottage. Georgina and her friends - Julian,
Dick and Anne find the gold on Kirrin Island. Georgina puts the gold in her pocket. She returns to Kirrin Cottage
and gives it to Uncle Quentin. Uncle Quentin splits the gold between the four children - Georgina, Julian, Dick
and Anne. A simple test of the Cordite DGL functionality. Each actor can run a separate Cordite node creating a
Distributed General Ledger (DGL).

Direct pay: FX transfers

Anne has moved to the US, and Julian wants to send some pocket money to Anne. However, Julian only has British
pounds (GBP) while Anne needs US dollars (USD). Therefore, Julian sends GBP to a FX provider with instructions
of converting the GBP to USD before sending to Anne. The FX provider carries out the currency conversion using
the current FX rate, sends USD to Anne, and levies a fee that is deducted from the transaction. Anne then receives
USD in her account.

6 Chapter 2. Concepts

Sphinx Example Project Documentation, Release 1

Multi-currency wallet

Anne realises that she still needs GBP when she goes back the UK, so she created a Multi-Currency Wallet that can
hold both USD and GBP. Next time, Julian can send GBP directly to Anne, who can receive the GBP and store it in
her Wallet.

Apologies to Enid Blyton, the author of The Famous Five Series. The characters and stories are based on this series.

2.1.5 CLI Demonstration

Click here for the CLI Demonstration

2.2 DAO

The DAO provides de-centralised governance by: - Allowing new digital autonomous organisations to be created using
existing legal entities. For example, digital mutual societies or digital joint stock companies. - Provides de-centralised
consensus in order to remove the need for a central operator, owner or authority. This allows cordite to be more
resilient, cheaper, agile and private than the incumbent financial infrastructure. - Facilitates the funding, building and
organising of decentralised applications. - Encapsulates voting, raising issues, marshaling changes to the system and
deciphering economic models.

2.2.1 Why are we interested in DAOs?
It is really hard to bring together a group of organisations to fund and build a decentralised application that they would
all like to use.

We have repeatedly seen that if you try and build a “blockchain app” and sell it, no one is interested - and you can’t
have a blockchain app on your own! However if you talk to other institutions to investigate co-creation, then they are
often really interested. However actually getting a disparate group of organisations together to fund the building of a
decentralised app is really hard.

* getting budgeting cycles aligned is hard

* getting experts together is hard

* who would actually build the app?

* who will make changes?

* who chooses which changes to build next?

* who will get those changes deployed safely to many institutions’ nodes?

However imagine if we spin up a decentralised autonomous organisation - a DAO. We could create governance,
economic and membership models, in code, that make it easier to bring organisations together to:

* fund the building of a decentralised app
* propose, and vote for, changes to the app

* propose, and vote for, changes to the dao itself - e.g. changes to voting or membership rules

2.2. DAO 7

https://en.wikipedia.org/wiki/Enid_Blyton
https://en.wikipedia.org/wiki/The_Famous_Five_(novel_series)

Sphinx Example Project Documentation, Release 1

Some DAOs may:
* offer incentives for joining the dao early
* have rules for distributing proceeds for deploying the system to another geography

A Decentralised Autonomous Orgnisation (DAQO) is an organisation that is governed by rules based on computer
code or network protocols and its decisions are made through the voting of its members.

We think that DAOs represent a really elegant way to bring organisations together to fund the building, and running, of
decentralised applications between institutions much easier, without having to resort to a centralised company sitting
in the middle monetising this.

Open source foundations represent existing example that is not that far away from what we are talking about here.

For an example of DAO, see Dash

DAO : Membership

Julian starts a gang with his brother Dick called the Famous Five. Dick proposes their sister Anne joins and Julian
accepts. Anne proposes their friend Georgina. Both Dick and Julian accept. Georgina proposes her dog Timmy
joins but none of the others accept her proposal. A simple test of the Cordite DAO functionality. Each actor can run a
separate Cordite node where Cordite is the collection of nodes.

DAO: Proposals

Julian proposes to his gang FamousFive that they head to Treasure Island. Anne proposes an alternative to Go Off
in a Caravan. Dick and Georgina vote for the Treasure Island proposal. Anne finds her proposal has been rejected,
while Julian’s has been accepted. The FamousFive head to Treasure Island. A simple test of the Cordite DAO
functionality. Each actor can run a separate Cordite node where FamousFive is a distributed autonomous organisation
(DAO) running on Cordite.

Apologies to Enid Blyton, the author of The Famous Five Series. The characters and stories are based on this series.

2.2.2 CLI Demonstration

Click here for the CLI Demonstration

2.3 Metering

Metering incentivises people to fairly participate in de-centralised organisations by: e Incentivising parties to run
metering notaries that can receive payments for notarisation. * Accommodating a variety of economic models, such as
PayGo and other customised structures. * Handling invoice and dispute resolution.

Incentives—We all need them and we all use them. From how you are remunerated for your time to the ice cream you
give your kids to reward them for good behaviour; distributed ledgers are no exception. Since there is no central party

8 Chapter 2. Concepts

https://www.dash.org/forum/threads/how-does-the-dash-dao-work.9560/
https://en.wikipedia.org/wiki/Enid_Blyton
https://en.wikipedia.org/wiki/The_Famous_Five_(novel_series)

Sphinx Example Project Documentation, Release 1

governing the network of a distributed ledger, we rely upon the participants to provide services to keep the show on
the road, and no one does this for free.

Different distributed ledgers will need different incentives to reward participants providing services to the network.
More than one economic model is expected to emerge in order to server the different applications of a distributed
ledger technology.

2.3.1 Lovely Rita, meter maid

Corda introduced us to notaries to verify the transactions. Building on this, Cordite introduces the concept of Metering
Notaries. Metering notaries verify the transaction and sends an invoice to the party originating the transaction including
the notary’s fees, much like a gas or electric utility company does. The transacting party can accept or dispute these
invoices. They can pay the invoice using Cordite DGL tokens. Metering notaries should be able to refuse to verify
transactions for parties that do not pay their invoices.

Metering fees are collected in a Cordite DAO (aka Digital Mutual) and distributed back to the metering notaries.
This provides the ability for pools of metering notaries to operate where they share the fees and the DAO provides
governance over the metering notary pool in order to allow the metering pool to evolve over time. The DAO itself may
also take a share of the fees in order to provide services

Metering Notaries have their own transactions verified by a guardian notary. The guardian notaries can also be run
as Metering Notaries to create two inter-locked sets of metering notaries checking each other’s transactions in a de-
centralised model. Depending on preference or application, you can adopt a variety of pricing models for your Dapp.
It allows organisations with differing economic needs and applications to adapt respectably.

The key point here, is that Metering Notaries represent an elegant and versatile method to provide the necessary
incentives while maintaining the benefits of de-centralisation.

Below is a story showcasing a simple token transaction and how metering works.

2.3.2 Metering: Token Transaction

Georgina sends a token to Dick, and the token transaction is notarised by a Metering Notary who charges a fee and
issues a Metering Invoice to Georgina. The Metering Invoice transaction is then notarised by a Guardian Notary be-
fore the Metering Invoice is paid by Georgina with tokens to the DAQO. The DAQ then distributes the funds according
to the DAO rules.

Apologies to Enid Blyton, the author of The Famous Five Series. The characters and stories are based on this series.

2.3.3 CLI Demonstration

Click here for the CLI Demonstration

2.4 Foundation

The Cordite Foundation is, currently, a necessary thin legal wrapper around Cordite, which is a DAO in Cordite.

The Foundation will be bootstrapped with a set of simple rules around:

2.4. Foundation 9

https://medium.com/corda/the-return-of-the-dao-88a93b64ec9f
https://medium.com/@rickcrook/the-case-for-de-centralisation-1ac14935a3fc
https://en.wikipedia.org/wiki/Enid_Blyton
https://en.wikipedia.org/wiki/The_Famous_Five_(novel_series)

Sphinx Example Project Documentation, Release 1

* membership - ie rules around joining
» governance - who can make proposals, vote for proposals, what happens to accepted proposals
¢ economics - how proceeds are used to run and evolve Cordite
Members of the Cordite Foundation are expected to:
* have proof of stake
* provide core infrastructure
* make proposals for evolving all aspects of cordite

The aim of the foundation is to create a body of people who can be trusted to over see the funding, running and
evolution of cordite over time. Much like an open source foundation.

DGL

ledger with accounts DAO

A

governance Metering

H

economics

10 Chapter 2. Concepts

../content/concepts/dgl.html
../content/concepts/dao.html
../content/concepts/metering.html

CHAPTER 3

Cordite Test

3.1 DGL CLI Demonstration

Current node addresses
* https://amer-test-cordite.foundation:8080
* https://apac-test-cordite.foundation:8080

* https://emea-test-cordite.foundation:8080

3.1.1 Commands used

Node Command

amer| notaries

amer| ledger.createAccount ("myBankAMER4", "OU=Cordite Foundation, O=Cordite
Guardian Notary, L=London, C=GB")

apac| ledger.createAccount ("myBankAPAC4", "OU=Cordite Foundation, O=Cordite
Guardian Notary, L=London, C=GB")

amer| ledger.createTokenType ("TOK4", 2, "OU=Cordite Foundation, O=Cordite
Guardian Notary, L=London, C=GB")

amer| ledger.issueToken ("myBankAMER4", 100, "TOK4", "my first token",
"OU=Cordite Foundation, O=Cordite Guardian Notary, L=London, C=GB")
amer| ledger.balanceForAccount ("myBankAMER4")

amer| ledger.transferToken (10, "TOK4:2:0U=Cordite Foundation, O=Cordite
AMER, L=New York City, C=US", "myBankAMER4", "myBankAPAC4@OU=Cordite
Foundation, O=Cordite APAC, L=Singapore, C=SG", "my first transfer",
"OU=Cordite Foundation, O=Cordite Guardian Notary, L=London, C=GB")
apac| ledger.balanceForAccount ("myBankAPAC4")

amer| ledger.balanceForAccount ("myBankAMER4")

11

https://amer-test-cordite.foundation:8080
https://apac-test-cordite.foundation:8080
https://emea-test-cordite.foundation:8080

Sphinx Example Project Documentation, Release 1

3.2 DAO CLI Demonstration

Current node addresses
* https://amer-test-cordite.foundation: 8080
* https://apac-test-cordite.foundation:8080

* https://emea-test-cordite.foundation:8080

3.2.1 Commands used

Node Command

amer| notaries

amer| dao.createDao ("Famous—-Five", "OU=Cordite Foundation,

Notary, L=London, C=GB")

O=Cordite Guardian

amer| dao.daoInfo ("Famous-Five") [0] .members

emea julian = network.getNodeByLegalName ("OU=Cordite Foundation, O=Cordite

AMER, L=New York City, C=US").legalldentities|[O0]

emea proposalState = dao.createNewMemberProposal ("Famous-Five", julian)

emea dao.acceptNewMemberProposal (proposalState.proposal.proposalKey, julian)

emea dao.daoInfo ("Famous-Five") [0] .members

apac| dick = network.getNodeByLegalName ("OU=Cordite Foundation, O=Cordite

EMEA, L=London, C=GB") .legalldentities[O0]

apac| anneProp = dao.createNewMemberProposal ("Famous-Five",

dick)

amer| ffkey = dao.daoInfo ("Famous-Five") [0].daoKey

amer| apkey = dao.newMemberProposalsFor (ffkey) [0] .proposal.proposalKey

amer| dao.voteForMemberProposal (apkey) ~

apac| apkey = anneProp.proposal.proposalKey

apac| dao.acceptNewMemberProposal (apkey, dick)

apac| dao.daoInfo ("Famous—-Five") [0] .members

amer| treasureState = dao.createProposal ("Treasure Island",

island", ffkey)

"head to treasure

apac| ffkey = dao.daoInfo ("Famous-Five") [0].daoKey
apac| caravanState = dao.createProposal ("Caravan", "go off in a caravan",
ffkey)

emea ffkey = dao.daoInfo ("Famous-Five") [0].daoKey

emea treasureKey = dao.normalProposalsFor (ffkey) [0] .proposal.proposalKey

emea dao.voteForProposal (treasureKey)

amer| treasureAccept = dao.acceptProposal (treasureState.proposal.proposalKey)

amer| treasureAccept.lifecycleState

3.3 Metering CLI Demonstration

Current node addresses
* https://amer-test-cordite.foundation:8080

* https://apac-test-cordite.foundation:8080

12

Chapter 3. Cordite Test

https://amer-test-cordite.foundation:8080
https://apac-test-cordite.foundation:8080
https://emea-test-cordite.foundation:8080
https://amer-test-cordite.foundation:8080
https://apac-test-cordite.foundation:8080

Sphinx Example Project Documentation, Release 1

* https://emea-test-cordite.foundation:8080

3.3.1 Commands used

’wip

3.4 Braid JS Client Example

3.4.1 Aim

The aim of this tutorial is to create a small cordite client in node js using braid. We will connect this to the braid
endpoint of the emea test node in the cordite test network. We will then proceed to make a few doc type queries and
also to create your very own Dao!

At the end of this tutorial you should be comfortable creating javascript cordite clients to call your serverside braid
endpoints.

The completed code for this tutorial can be found here.

3.4.2 Pre-requisites

* NodelJS installed on your machine

3.4.3 Steps

1. In a terminal, create a directory in which to put your code and change to that directory

mkdir braidJdsClient
cd braiddsClient

2. Next, initialise a node project:

> npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See "npm help json’ for definitive documentation on these fields
and exactly what they do.

Use "npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press ~C at any time to quit.

package name: (wibble) cordite-braid-js-client
version: (1.0.0)

description:

(continues on next page)

3.4. Braid JS Client Example 13

https://emea-test-cordite.foundation:8080
https://gitlab.com/bluebank/braid
https://gitlab.com/cordite/cordite/tree/master/clients/braid-js-example
https://nodejs.org

Sphinx Example Project Documentation, Release 1

(continued from previous page)

entry point: (index.js) client.js

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /private/tmp/wibble/package. json:

{

"name": "cordite-braid-js-client",
"version": "1.0.0",
"description": "",
"main": "client.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}I
"author": "",
"license": "ISC"

}

Is this ok? (yes) y

3. Install the braid javascript client

npm install --save braid-client

4. Connect braid to the cordite emea test test node
* create the client.js file we specified above: touch client. js.

* edit this file to import the dependency and connect to emea test

const Proxy = require('braid-client') .Proxy;

const emea

—onOpen, onClose, onError, {strictSSL: false})
function onOpen () {

console.log ("connected™)

function onClose () {
console.log("closed")

function onError (err) {
console.error (err)

new Proxy ({url: 'https://emea-test.cordite.foundation:8080/api/"'},

14

Chapter 3. Cordite Test

Sphinx Example Project Documentation, Release 1

If we run this using node client. js we should get the output: connected!.

5. Next we want to see what is in the braid endpoint. So change the onOpen () function to:

function onOpen () {
console.log("connected to the emea test cordite node")
console.log (JSON.stringify (emea))
console.log ("\ndao functions:")
Object.getOwnPropertyNames (emea.dao) . forEach (f => console.log(f))
console.log("")
emea.dao.daoInfo.docs ()

This should give the output:

node client.js
connected to the emea test cordite node
{“network”:{},“flows”:{},“1ledger”:{},“dao”:{}}

daoFunctions:
getServiceHub
voteForProposal

daoInfo

createDao
newMemberProposalsFor
normalProposalsFor
modelDataProposalsFor
createProposal
createNewMemberProposal
createRemoveMemberProposal
acceptNewMemberProposal
acceptRemoveMemberProposal
acceptProposal
voteForMemberProposal
requestProposalConsistencyCheckFor
createModelDataProposal
voteForModelDataProposal
acceptModelDataProposal

API documentation

* daoInfo (daoName) => array

@param daoName - string

Which we know means we have four ServiceProxy objects, one each for network, flows, ledger and dao.
The second line prints out all the available methods and the last line prints out the docs for the daoInfo method.

6. Finally lets create a dao:

3.4. Braid JS Client Example

15

Sphinx Example Project Documentation, Release 1

let saltedDaoName = 'testDao-'+new Date () .getTime ()

function onOpen () {
console.log("connected to the emea test cordite node")

emea.dao.daoInfo (saltedDaoName) .then (daos => {
console.log("there were", daos.length, "existing daos with name", |

—saltedDaoName)

return emea.dao.createDao (saltedDaoName, "O=Cordite Metering Notary,
—0U=Cordite Foundation, L=London,C=GB")
}) .then (dao => {
console.log(saltedDaoName, "created with key",JSON.stringify (dao.daoKey))
}) .catch(error => {
console.error (error)

b

Running this gives us:

connected to the emea test cordite node

there were 0 existing doas with name testDao-1524060634372
testDao-1524060634372 created with key {"name":"testDao-1524060634372","uuid":
—"f99c32c4-7e9c-4c3a-af99-9765d8e6eb5b4", "uniqueldentifier": {"externalId":
—"testDao-1524060634372","1id":"f99¢c32¢c4-7e9c-4c3a-af99-9765d8e6e5b4"}}

The full code is now:

const Proxy = require('braid-client') .Proxy;

const emea = new Proxy({url: 'https://emea-test.cordite.foundation:8080/api/"},
—onOpen, onClose, onError, {strictSSL: false})

let saltedDaoName = 'testDao-'+new Date () .getTime ()

function onOpen () {
console.log("connected to the emea test cordite node")

emea.dao.daoInfo (saltedDaoName) .then (daos => {
console.log("there were", daos.length, "existing daos with name",

—saltedDaoName)

return emea.dao.createDao (saltedDaoName, "O=Cordite Metering Notary,
—0U=Cordite Foundation, L=London,C=GB")

}) .then (dao => {
console.log(saltedDaoName, "created with key",JSON.stringify (dao.daoKey))

}) .catch (error => {
console.error (error)

})

function onClose () {

(continues on next page)

16 Chapter 3. Cordite Test

Sphinx Example Project Documentation, Release 1

(continued from previous page)

console.log("closed™)

function onError (err) {
console.error (err)

3.5 Token JS Example

Cordite has tokens, just like Corda. Cordite however is capable of issuing tokens to specific accounts on a node. Token
issuance must be notarised. You can create token types and accounts to your heart’s content!

By this stage you know how to connect using the CLI or the Braid JS Client, so follow along with your chosen client.
This page explains how to:

* create a token type

* create an account

* issue tokens to an account

* display the balance of an account

Connect to a cordite node Firstly, connect to a cordite node - emea test in this case. Create variables for the desired
notary, token type name, and account name.

const Proxy = require('braid-client') .Proxy;
const emea = new Proxy({url: 'https://emea-test.cordite.foundation:8080/api/"},
—onOpen, onClose, onError, {strictSSL: false})

let saltedTokenName = 'TOK-'+new Date () .getTime ()
let saltedAccountName = 'Acc-'+new Date () .getTime ()
let notary = "OU=Cordite Foundation, O=Cordite Guardian Notary, L=London, C=GB"

function onOpen () {
console.log("connected to the emea test cordite node")

function onClose () {
console.log("closed")

function onError (err) {
console.error (err)

Create token type and account Now create the token type and the Account. For the createTokenType () func-
tion you must specify a name or symbol such as USD, an exponent, and a notary. When creating an account
with createAccount (), just specify the desired name/ID and a notary.

function onOpen () {
console.log("connected to the emea test cordite node")

emea.ledger.createTokenType (saltedTokenName, 2, notary) .then(a => {
console.log("Token with name " + saltedTokenName + " created")

(continues on next page)

3.5. Token JS Example 17

Sphinx Example Project Documentation, Release 1

(continued from previous page)

return emea.ledger.createAccount (saltedAccountName, notary)
}).then(b => {

console.log ("Account with name " + saltedAccountName + " created")
}) .catch (error => {

console.error (error)

})

Issue tokens and check balance Finally, issue tokens of the type just created to your new account with
issueToken (). Specify the account name, quantity, token type, a message, and a notary. We then query
the balance of the account with balanceForAccount () to check that the tokens were issued. For this
function we need only specify the account name.

function onOpen() {
console.log("connected to the emea test cordite node")

emea.ledger.createTokenType (saltedTokenName, 2, notary) .then(a => {
console.log("Token with name " + saltedTokenName + " created")
return emea.ledger.createAccount (saltedAccountName, notary)
}).then(b => {
console.log("Account with name " + saltedAccountName +
return emea.ledger.issueToken (saltedAccountName, 100, saltedTokenName, "First
—issuance", notary)
}).then(¢ => {
console.log("Tokens of type " + saltedTokenName + " issued to " +_
—saltedAccountName)
return emea.ledger.balanceForAccount (saltedAccountName)
}).then(d => {
bal = (d[0].quantity % d[0].displayTokenSize) + " " + d[0].token.symbol
console.log("Balance for " + saltedAccountName + ": " + bal)
}) .catch(error => {
console.error (error)

created")

})

Your console output should now show the balance of your account. The token type and quantity are displayed. For
example:

connected to the emea test cordite node

Token with name TOK-1532429563901 created

Account with name Acc-1532429563901 created

Tokens of type TOK-1532429563901 issued to Acc-1532429563901
Balance for Acc-1532429563901: 100 TOK-1532429563901

The full code is now:

const Proxy = require('braid-client') .Proxy;
const emea = new Proxy ({url: 'https://emea-test.cordite.foundation:8080/api/"'},
—onOpen, onClose, onError, {strictSSL: false})

let saltedTokenName = 'TOK-'+new Date () .getTime ()

let saltedAccountName = 'Acc-'+new Date () .getTime ()

let notary = "OU=Cordite Foundation, O=Cordite Guardian Notary, L=London, C=GB"
function onOpen () {

console.log("connected to the emea test cordite node")

(continues on next page)

18 Chapter 3. Cordite Test

Sphinx Example Project Documentation, Release 1

(continued from previous page)

emea.ledger.createTokenType (saltedTokenName, 2, notary) .then(a => {
console.log("Token with name " + saltedTokenName + " created")
return emea.ledger.createAccount (saltedAccountName, notary)
}).then(b => {
console.log ("Account with name " + saltedAccountName + " created")
return emea.ledger.issueToken (saltedAccountName, 100, saltedTokenName, "First
—issuance", notary)
}).then(¢ => {
console.log("Tokens of type " + saltedTokenName + " issued to " +
—saltedAccountName)
return emea.ledger.balanceForAccount (saltedAccountName)
}).then(d => {
bal = (d[0].quantity % d[0].displayTokenSize) + " " + d[0].token.symbol
console.log("Balance for " + saltedAccountName + ": " + bal)
}) .catch(error => {
console.error (error)

})

function onClose () {
console.log("closed")

function onError (err) {
console.error (err)

3.6 DAO JS Example

Cordite has the concept of DAOs. There is a Cordite Foundation DAO, called the committee. You can also create your
own DAOs, either by using the DaoService or by extending this code for your own purposes (in which case please
contribute your awesome changes back to Cordite).

By this stage you know how to connect using the CLI or the Braid JS Client so follow along with your chosen client.
This page explains how to:

e create your own DAO

* other people can request membership

* create proposals

* vote for proposals

* accept proposals

The full code can be found here

3.6.1 Connecting to two cordite nodes

DAOs don’t make sense unless you have a few Parties that want to be part of the DAO. In this case we are going to
work with two parties; the EMEA and AMER nodes on the Test network. This introduces some slight complexity over
and above the Braid JS Client tutorial because we need to wait for two braid proxies to connect before we can start.
There are many ways of solving this, one of which is shown below:

3.6. DAO JS Example 19

https://gitlab.com/cordite/cordite/tree/master/examples/dao-js-example

Sphinx Example Project Documentation, Release 1

const Proxy = require('braid-client') .Proxy;

// set up using test network

let emeaAddress = "https://emea-test.cordite.foundation:8080/api/"

let amerAddress = "https://amer-test.cordite.foundation:8080/api/"

const emea = new Proxy ({url: emeaAddress}, onOpenEmea, onClose, onError, {strictSSL:
—~false})

var amer

function onOpenEmea () {

console.log("connected to emea. connecting to amer...")

amer = new Proxy ({url: amerAddress}, onBothReady, onClose, onError, {strictSSL:
—~false})
}

function onBothReady () {
console.log("also connected to amer...starting test")

function onClose () {
console.log("closed™)

function onError (err) {
console.error (err)

With this we will be adding most of our code to the onBot hReady method.

3.6.2 Create your own DAO

First, let’s create a new DAO - you need to give this a unique name (atleast for the node you’re running on). For the
purposes of this walkthrough we will call our DAO “My Dapp Dao”. Its purpose is to gather together some interested
parties to fund, build and then later run a decentralised app that several people want to build together.

Note this assumes you have two js apps connected to the emea and amer nodes in the cordite test network.

let saltedDaoName = 'testDao-'+new Date () .getTime ()

var daoKey

let meteringNotaryName = "O=Cordite Metering Notary, OU=Cordite Foundation, L=London,
—C=GB"

function onBothReady () {
console.log("also connected to amer...starting test")

emea.dao.createDao (saltedDaoName, meteringNotaryName) .then (daoState => {
daoKey = daoState.daoKey
console.log("emea created dao with name",saltedDaoName, "and key",daoKey)

}) .catch(error => {
console.error (error)

})

20 Chapter 3. Cordite Test

Sphinx Example Project Documentation, Release 1

3.6.3 Amer joins the DAO

Next, the amer party would like to join the DAO. So it needs to get the sponsoring node (in this case the only existing
DAO member is emea, so we use this) and the daoName.

In this case, the proposer implicitly supports the new member so there are already enough supporters to propose
acceptance of the proposal so we will do that here. If there were more DAO members we would have garner more
support before proposing acceptance.

var emeaParty
let emeaNodeName = "OU=Cordite Foundation, O=Cordite EMEA, L=London, C=GB"

function onBothReady () {
console.log("also connected to amer...starting test")

emea.dao.createDao (saltedDaoName, meteringNotaryName) .then (daoState => {
daoKey = daoState.daoKey
console.log("emea created dao with name", saltedDaoName, "and key",daoKey)
return amer.network.getNodeByLegalName (emeaNodeName)

}) .then (emeaNode => {
emeaParty = emeaNode.legalldentities[0]
console.log("amer asking to Jjoin dao")
return amer.dao.createNewMemberProposal (saltedDaoName, emeaParty)

}) .then (proposalState => {
console.log("proposalKey:",proposalState.proposal.proposalKey)
console.log("both members already support so we can just propose acceptance")
return amer.dao.acceptNewMemberProposal (proposalState.proposal.proposalKey,

—emeaParty)

}) .then (proposal => {
console.log("proposal state now:", proposal.lifecycleState)
console.log("dao members now", proposal.members.map(x => x.name) .join())

}) .catch(error => {
console.error (error)

[

})

3.6.4 Amer proposes change to voting rules

Finally, the amer node would like to propose making a small change to the voting rules. So it must:
* create a new proposal
« talk the emea node into voting for it
* propose acceptance of the proposal

The full code is now:

const Proxy = require('braid-client') .Proxy;

// set up using test network
let emeaAddress = "https://emea-test.cordite.foundation:8080/api/"
let amerAddress = "https://amer—test.cordite.foundation:8080/api/"

const emea = new Proxy({url: emeaAddress}, onOpenEmea, onClose, onError, {strictSSL:
—~false})
var amer

(continues on next page)

3.6. DAO JS Example 21

Sphinx Example Project Documentation, Release 1

(continued from previous page)

let saltedDaoName = 'testDao-'+new Date () .getTime ()

let meteringNotaryName = "O=Cordite Metering Notary, OU=Cordite Foundation, L=London,
—C=GB"

let emeaNodeName = "OU=Cordite Foundation, O=Cordite EMEA, L=London, C=GB"

var daoKey
var emeaParty
var normalProposalKey

function onOpenEmea () {

console.log("connected to emea. conneting to amer...")

amer = new Proxy ({url: amerAddress}, onBothReady, onClose, onError, {strictSSL:
—~false}l)

}

function onBothReady () {
console.log("also connected to amer...starting test")

emea.dao.createDao (saltedDaoName, meteringNotaryName) .then (daoState => {
daoKey = daoState.daoKey
console.log("emea created dao with name",saltedDaoName, "and key",daoKey)
return amer.network.getNodeByLegalName (emeaNodeName)

}) .then (emeaNode => {
emeaParty = emeaNode.legalldentities[0]
console.log("amer asking to Jjoin dao")
return amer.dao.createNewMemberProposal (saltedDaoName, emeaParty)

}) .then (proposalState => {
console.log("proposalKey:",proposalState.proposal.proposalKey)
console.log("both members already support so we can just propose acceptance")
return amer.dao.acceptNewMemberProposal (proposalState.proposal.proposalKey,

—emeaParty)

}) .then (proposal => {
console.log("proposal state now:", proposal.lifecycleState)
console.log("dao members now", proposal.members.map(x => x.name) .join())
console.log("now amer proposes to change the membership rules")
return amer.dao.createProposal ("change voting percentage", "change the voting,

—percentage of people needed to accept", daoKey)

}) .then (normProposalState => {
normalProposalKey = normProposalState.proposal.proposalKey
console.log("new proposal created with key",normalProposalKey)

[

console.log("emea decides to support proposal")
return emea.dao.voteForProposal (normalProposalKey)
}) .then (votedProposalState => {
console.log("should be two supporters now", votedProposalState.supporters.
—length)
console.log("amer proposes to accept")
return amer.dao.acceptProposal (normalProposalKey)
}) .then (acceptedProposal => {
console.log("should be accepted",acceptedProposal.lifecycleState)
console.log("and we are done :—)")
}) .catch (error => {
console.error (error)

b

function onClose () {
console.log("closed™)

(continues on next page)

22 Chapter 3. Cordite Test

Sphinx Example Project Documentation, Release 1

(continued from previous page)

function onError (err) {
console.error (err)

Notaries

Cordite Alpha Topology

Fig. 1: Cordite World Picture

There is also https://network-map-test.cordite.foundation which provides a UI to view the network.

Edge network has the most bleeding edge version of Cordite deployed. This is the latest successful build of master
in the Cordite repo. It should be seen as an unstable environment. Data is persisted but can be removed at any time
without warning.

Test network is the latest release of Cordite deployed. This is the latest version to be pushed to the public registries
e.g. DockerHub. It should be seen as a stable environment and a pre-cursor to the main network which will follow.
Data is persisted and should remain. No guarantees are made.

The aim of the test network is to allow people to: - Connect to cordite - Build decentralised applications using cordite
- Build DAOs - Add your own node

3.6. DAO JS Example 23

https://network-map-test.cordite.foundation

Sphinx Example Project Documentation, Release 1

3.7 Connection details

Node name (endpoint hyper- | Node loca- | Party name
link) tion
amer eastus O=Cordite AMER, OU=Cordite Foundation, L=New York
City, C=US
apac southeast O=Cordite APAC, OU=Cordite Foundation, L=Singapore,
asia C=SG
emea westeurope O=Cordite EMEA, OU=Cordite Foundation, L=London,
C=GB
3.8 Cordite Entities
Node name Node loca- | Party name
tion
Cordite Metering No- | westeurope O=Cordite = Metering Notary, OU=Cordite ~ Foundation,
tary L=London,C=GB
Cordite Committee westeurope O=Cordite Committee, OU=Cordite Foundation, L=London,C=GB

24 Chapter 3. Cordite Test

https://amer-test.cordite.foundation:8080
https://apac-test.cordite.foundation:8080
https://emea-test.cordite.foundation:8080

CHAPTER 4

Contributing

4.1 Code of Conduct

4.1.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

4.1.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:
» Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
 Focusing on what is best for the community
» Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others’ private information, such as a physical or electronic address, without explicit permission

* Other conduct which could reasonably be considered inappropriate in a professional setting

25

Sphinx Example Project Documentation, Release 1

4.1.3 Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

4.1.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

4.1.5 Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
community @cordite.foundation. All complaints will be reviewed and investigated and will result in a response that is

deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

4.1.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-
covenant.org/version/1/4

4.2 Issue Management

4.2.1 Labels
The issues backlog is actively managed. All issues are labeled for importance using MSCW method and urgency

using AQL method. Please use the MUST, SHOULD, COULD, WONT labels to define important and CRITICAL,
MAJOR, MINOR for urgency on all issues raised using the label defintions.

4.2.2 Milestones

The next two milestones are open. Issues that are being actively worked on and expected to be delivered in time for
the milestone are added to the milestone. Adding issues to milestones does not make them actively worked on. Only
issues that are actively worked tend to make it into milestones!

4.2.3 Tagging / Release

Please do not use tags. Tagging is reserved for releases.

26 Chapter 4. Contributing

mailto:community@cordite.foundation
http://contributor-covenant.org
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/
https://en.wikipedia.org/wiki/MoSCoW_method
https://www.drupal.org/core/issue-priority
https://gitlab.com/cordite/cordite/labels
https://gitlab.com/cordite/cordite/milestones

Sphinx Example Project Documentation, Release 1

4.2.4 Continuous Integration / Continuous Deployment

We follow trunk based development. All successfull builds of master are released to Maven Central (as a snapshot),
DockerHub (tagged EDGE) and the Cordite EDGE network is upgraded.

4.2.5 Releases

Master is released every two weeks as a new tagged release to the public binary stores (maven central, dockerhub,
gitlab artefacts) and the Cordite Test upgraded. Maintainers follow Semantic Versioning when tagging the code and
creating new releases.

4.3 Legal

All contributions to this project must be certified that:

1. The contribution was created in whole or in part by me and I have the right to submit it under the open source
license indicated in the file; or

2. The contribution is based upon previous work that, to the best of my knowledge, is covered under an appropriate
open source license and I have the right under that license to submit that work with modifications, whether
created in whole or in part by me, under the same open source license (unless I am permitted to submit under a
different license), as indicated in the file; or

3. The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I have not
modified it.

4. T understand and agree that this project and the contribution are public and that a record of the contribution
(including all personal information I submit with it, including my sign-off) is maintained indefinitely and may
be redistributed consistent with this project or the open source license(s) involved.

4.4 Licence

Copyright 2018, Cordite Foundation.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

4.5 Getting in touch

* News is announced on @We_are_Cordite

¢ More information can be found on Cordite website
¢ We use #cordite channel on Corda slack

* We informally meet at the Corda London meetup

e email community @cordite.foundation

4.3. Legal 27

https://trunkbaseddevelopment.com/5-min-overview/
https://mvnrepository.com/artifact/io.cordite/
https://hub.docker.com/r/cordite/cordite/
https://semver.org/
http://www.apache.org/licenses/LICENSE-2.0
https://twitter.com/we_are_cordite
https://cordite.info
https://slack.corda.net/
https://www.meetup.com/pro/corda/
mailto:community@cordite.foundation

Sphinx Example Project Documentation, Release 1

4.6 Troubleshooting

If you encounter any issues whilst using Cordite, and your issue is not documented, please raise an issue.

4.7 Contributing

We welcome contributions both technical and non-technical with open arms! There’s a lot of work to do here, and
we’re especially concerned with ensuring the longevity and reliability of the project.

Please take a look at our issue backlog if you are unsure where to start with getting involved!

4.8 Repository Access

While we are in private alpha, please go to the slack channel (#cordite channel on Corda slack) to request access to
the repository

4.9 Releases

The first release, v0.1.0, was tagged through gitlab, on a version of the code that we saw pass the pipeline. Unless
mentioned otherwise the process will continue the same and we will be releasing every two weeks. Currently we
will not really follow SEMVAR specification util the api settles down. Once it is, we will release v1.0.0 and follow
SEMVAR from there onwards.

28 Chapter 4. Contributing

https://gitlab.com/cordite/cordite/issues/new
https://gitlab.com/cordite/cordite/issues
https://slack.corda.net/
https://gitlab.com/cordite/cordite

CHAPTER B

Frequently Asked Questions

5.1 Can | run multiple nodes on a single machine?

Yes you can. You need to be aware of the ports you are using for each node on the same host to ensure none clash. For
all new ports assigned to each node, you will need to update the firewall accordingly.

5.2 How do | build from source?

When building from source we recommend the following setup: * Unix OS (ie OS X) * Docker - minimum supported
version 18.03.0 * NPM - minimum supported version 5.6.0 * Oracle JDK 8 JVM - minimum supported version 8ul31

For those wishing to build Cordite from source run . /build. sh. (NOTE: this script is not to designed to be run on
Windows.) Cordite node is laid out in . /node and gradle builds in . /cordapps. To start node after the build run
(cd node && start.sh).

5.3 How do | connect to a Cordite node?

We have created a few test nodes: + https://amer-test.cordite.foundation:8080 + https://apac-test.cordite.foundation:
8080 + https://emea-test.cordite.foundation:8080

These are available as public nodes hosted in East US, SE Asia and W Europe locations respectively. You can use the
REST endpoint /api or use the following clients: + example node client + Interactive console

5.4 How do | deploy my own Cordite node?

We use Docker to deploy Cordite nodes. For instructions on starting up a Cordite node using Docker, please visit our
Docker Hub Repo for more information on configuration including environment variables:

29

https://amer-test.cordite.foundation:8080
https://apac-test.cordite.foundation:8080
https://apac-test.cordite.foundation:8080
https://emea-test.cordite.foundation:8080
https://gitlab.com/cordite/cordite/tree/master/clients/braid-js-example
https://gitlab.com/cordite/cordite/tree/master/clients/cli
https://docs.docker.com/get-started/
https://hub.docker.com/r/cordite/cordite/

Sphinx Example Project Documentation, Release 1

$ docker run -p 8080:8080 —-p 10002:10002 cordite/cordite

Once the node is running, you will be able to see the REST API for accessing Cordite at https://localhost:8080/api

If you do not wish to use Docker then alternatively you can download the latest Cordite node and run without docker
by running . /start . sh. You will need Oracle JRE 8 JVM - minimum supported version 8ul31.

5.4.1 Environment Variables

Cordite uses environment variables to configure Cordite and create amoungst other things the Corda node.conf file.

TIBILITY_ZONE _URL

Env Name Description Default

CORDITE_LEGAL The name of the node O=Cordite-XXX,

_NAME OU=Cordite, L=London,
C=GB

CORDITE_P2P_ AD- | The address other nodes will use to speak to your | localhost:10002

DRESS node

CORDITE_COMPA The address of the Network Map Service. https://network -map-

test.cordi te.foundation

PERSAL_CON FIG

CORDITE_KEY_ Keystore password cordacadevpass

STORE_PASSWOR

D

CORDITE_TRUST Truststore password trustpass

_STORE_PASSW ORD

CORDITE_DB_U SER Username for db sa

CORDITE_DB_P ASS Password for db dnpass

CORDITE_DB_D IR Path to db directory /opt/cordite/db /

CORDITE_BRAID Braid port 8080

_PORT

CORDITE_DEV_MODE | Start up node in dev mode true

CORDITE_DETEC T_IP Allow node to auto detect external visible IP false

CORDITE_TLS_ Path to TLS certificate null

CERT_PATH

CORDITE_TLS_ Path to TLS Key null

KEY_PATH

CORDITE_NOTAR Y Set to true to be a validating notary, false for non- | null
validating or do not set to be a notary

CORDITE_METER JSON to set metering notary configuration null

ING_CONFIG

CORDITE_FEE_ DIS- | JSON to set metering fee dispersal config null

30

Chapter 5. Frequently Asked Questions

https://localhost:8080/api
https://gitlab.com/cordite/cordite/-/jobs/artifacts/master/download?job=release:zip
https://network

Sphinx Example Project Documentation, Release 1

5.4.2 Volume Mounts

File/Folder Description

/opt/cordite/n Configuration file detailing specifics of your node - will be created using env variables if a
ode.conf node.conf is not mounted

/opt/cordite/d b Location of the database for that node - for persistence, use volume mount

cates

/opt/cordite/c ertifi-

Location of the nodes’ corda certificates - will be created if no certificates are mounted to
node and devmode=true

/opt/cordite/t
certificate s

Is-

Location of TLS certificates - will use self-signed certificates if none are mounted to node

5.5 How do | use Cordite in my own project

The core of Cordite is a collection of CorDapps which are java libraries. These are releasd to Maven Central and can
be used in your project

Cordite provides decentralised economics and governance services. Cordite is regulatory friendly, enterprise ready
and finance grade. Cordite is an open source CorDapp, built on Corda.

5.5. How do | use Cordite in my own project 31

http://central.maven.org/maven2/io/cordite/

	Introduction
	History
	Architecture
	Roadmap
	Cordite provides de-centralised governance and economic services to mutually distrusting corporations wishing to solve distributed challenges in their industries.
	Built on Corda

	Concepts
	DGL
	DAO
	Metering
	Foundation

	Cordite Test
	DGL CLI Demonstration
	DAO CLI Demonstration
	Metering CLI Demonstration
	Braid JS Client Example
	Token JS Example
	DAO JS Example
	Connection details
	Cordite Entities

	Contributing
	Code of Conduct
	Issue Management
	Legal
	Licence
	Getting in touch
	Troubleshooting
	Contributing
	Repository Access
	Releases

	Frequently Asked Questions
	Can I run multiple nodes on a single machine?
	How do I build from source?
	How do I connect to a Cordite node?
	How do I deploy my own Cordite node?
	How do I use Cordite in my own project

